
NONMEM Users Guide -- Part II

Users Supplemental Guide

April 1988

by

Stuart L. Beal

And

Lewis B. Sheiner

Electronic copy produced

March 2008, August 2011

Copyright by the Regents of the University of California

1979, 1984

All rights reserved

TABLE OF CONTENTS

B.1 Introduction .. 5

B.2 Background ... 5

B.3 Implementation .. 6

C.1 Introduction .. 9

C.2 An Example .. 9

C.3 Implementation of the Example .. 11

C.4 The Theta Constraint Option (Obsolete) .. 12

C.5 The Unit Slope Line .. 13

C.6 CRIT ... 14

Figure 1 .. 16

Figure 2 .. 17

Figure 3 .. 18

Figure 4 .. 19

Figure 5 .. 20

Figure 6 .. 21

Figure 7 .. 22

Figure 8 .. 23

D.1 Introduction ... 24

D.2 Example Involving Transgeneration of Data ... 24
D.2.1 Introduction ... 24

D.2.2 Transgeneration (PASS) .. 25

D.2.3 FINISH Record ... 27

D.2.4 Label Option ... 28

D.2.5 COVARIANCE Record ... 28

D.2.6 Eigenvalues ... 29

D.3 Example Involving Complete Multivariability .. 30
D.3.1 Introduction .. 30

D.3.2 The General Model with One-Level Vested Random Effects 31

D.3.3 The Level Two Data Item ... 33

D.4 Example Involving Utilities CHOL and MULT .. 35
D.4.1 introduction ... 35

D.4.2 Cholesky Square Root (CHOL) ... 38

D.4.3 Reweighting Objective Function (MULT) .. 40

Figure 9 .. 41

Figure 10a .. 42

Figure 10b .. 43

Figure 10c .. 44

Figure 11 .. 45

Figure 12 .. 46

Figure 13a .. 47

A. Introduction ... 4

B. Constraints on Omega and Sigma .. 5

C. Simple Bayesian Nonlinear Regression ... 9

D. Linear Regression with One-Level Nested Random Effects 24

Figure 13b .. 48

Figure 14 .. 49

Figure 15 .. 50

Figure 16 .. 51

Figure 17a .. 52

Figure 17b .. 53

Figure 17c .. 54

Figure 18 .. 55

Figure 19 .. 56

Figure 20 .. 57

Figure 21a .. 58

Figure 21b .. 59

E.1 Introduction .. 60

E.2 Sharing a Data Set .. 60

E.3 Model Specification Files ... 61

E.4 Embedding Files Into the Control Stream ... 62

E.5 Embedding Files into the Print Stream .. 64

E. Multiple Problems .. 60

F. Rescaling .. 65

References ... 68

NONMEM Users Supplemental Guide – Part II page 4

A. Introduction

This document describes features of the NONMEM system that are not described in the Users

Basic Guide, i.e., NONMEM Users Guide, Part I. Note moreover, that some features described

here are not available with Version I, or with just Version I Level 1. Such circumstances wherein

features are not available, are given in the text.

The computer output shown in the figures from the examples of section D is obtained from the

Control Data Corporation version of NONMEM, rather than from the IBM version. The CDC

version is not being distributed. The computer output shown in the figures from the example of

section C is obtained from the IBM version of NONMEM, Version II Level 1.

We take this opportunity to mention some miscellaneous points that were not made clear in the

Users Basic Guide.

The same ID data item may be used to identify two different individual records, providing

these records are not contiguous in the data set.

When the MD V data item of a data record is 1, the DV data item of that record is not

included in a SCATTERPLOT in which DV data items are plotted on either the ordinate or

abscissa axis.

The width of an A format code appearing in a FORMAT record should not exceed 4

(the no. of bytes in an IBM word). A data item read with such a code should not be

tabled.

NONMEM Users Supplemental Guide – Part II page 5

B. Constraints on Omega and Sigma

B.1 Introduction

The omega and sigma matrices are always constrained to be positive semidefinite, but they also

may be constrained in certain special ways. This is the topic discussed in this section. Particular

examples are given here without the aid of computer output. Some examples with computer

output are given in sections C and D. Some general background is given first in section B.2, and

then a discussion of the general use of the STRUCTURE and BLOCK SET records to implement

constraints is given in section B.3.

B.2 Background

Consider either the omega or sigma matrix, and denote it by M. Recall that this matrix is the

covariance matrix of either the η effects or the ε effects. One constraint on M that can be

implemented is that M have the form























nM

M

M

M

0

0

2

1



dimension of Mi = di for all 1 ≤ i ≤ n

where the di are fixed integers. That is, M is constrained to be in block diagonal form, where the

submatrices along the diagonal have given dimensions. These submatrices are called the

diagonal blocks of M. For example, suppose that there are three η effects

and that η3 is to be regarded as uncorrelated with η1 and η2. Then M should be constrained to be in

block diagonal form with n = 2, and the dimensions of M1 and M2 should be 2 and 1 respectively.

If η2 is to be regarded as uncorrelated with η1 and η3, then simply renumber these random effects

(in particular, permute η2 and η3), and the desired end can be achieved by constraining M to be in

the same block diagonal form as the one just given. If the three random effects are to be regarded

as completely pairwise uncorrelated, i.e. all off diagonal elements of M are to be zero, then M

should be constrained to be in block diagonal form with n = 3, and the dimensions of the three

diagonal blocks should all be 1. Of course, the constraint that M be diagonal can be implemented

more easily by using the DIAGONAL record as explained in the NONMEM Users Guide Part I.

The block diagonal constraint is the basic constraint in terms of which the other constraints are

expressed.

Another constraint on M that can be implemented involves the notion of a block set. A block set

is a set of consecutively ordered diagonal blocks, once M is expressed in block diagonal form.

For example, {M3, M4, M5}, {M5, M6}, and {M1} are all block sets. However {M1, M3} is not a

block set since M1 and M3 are not consecutively ordered. Now the n diagonal blocks may be

partitioned into block sets. The partition is called a block set partition. In each block set of the

partition, the blocks of the set are constrained to be equal. Therefore, all blocks of a particular

NONMEM Users Supplemental Guide – Part II page 6

block set must have the same dimension. For example, in the above situation where there are

three η effects and n = 3, the variances of the first two effects can be constrained to be the same

by partitioning the blocks into block sets {M1, M2} and {M3}. The variances of all three effects

can be constrained to be the same by forming the single block set {M1, M2, M3}.

The last type of constraint on M that can be implemented also involves the notion of a block set

partition. All the blocks of any particular block set can be constrained to equal some given

matrix. For example, in the above situation where there are three η effects and n = 2, the block

M1 can be constrained to equal the two dimensional matrix A. To do this one must first partition

the diagonal blocks into the block sets {M1} and {M2}. To take another example, in the above

situation where there are three η effects and n = 3, blocks M1 and M2 may be constrained to both

equal the number a, while M3 may be constrained to equal the number b. To do this the diagonal

blocks should first be partitioned into the block sets {M1, M2} and {M3}. To take yet another

example, if M is to be constrained to equal a matrix A, then only one block set need be formed,

viz, {M}. If, though, A is diagonal, then one could alternatively take the partition {M1}, {M2},

etc. of block sets, each of which consists of a single one dimensional block, and specify that each

block is to equal a diagonal element of A.

B.3 Implementation

The three types of constraints described in section B.2 are implemented by using the

STRUCTURE and BLOCK SET records. Suppose one desires to impose one of these types of

constraints on the omega matrix. A block set partition must be constructed. This is true even if

there is only one block per block set (as is the case with the first type of constraint described in

section B.2). The partition is specified in part with the STRUCTURE record for omega. This

integer format record has two fields for each of the block sets of the block set partition. For each

block set, the number of blocks in the set and the common dimension of all the blocks in the set

are placed in the first and second of the fields, respectively, corresponding to this block set. The

pairs of fields are ordered on the record as the block sets are ordered in the block set partition.

For example, if there are two block sets such that the size of the first set and the dimension of its

blocks are 2 and 1, respectively, and the size of the second set and the dimension of its blocks are

1 and 2, respectively, then the STRUCTURE record is as in Example B. 3.i.

Example B.3.i:

STRC 2 1 1 2

column no.: 1 1 2 2

 2 6 0 4

In addition, fields 6 and 7 of the initial STRUCTURE record must have appropriate values. A

zero or blank is placed in field 6, and the number of block sets of the partition is placed in field 7.

(Note that all examples in NONMEM Users Guide, Part I, involve omega matrices that are either

constrained to be diagonal or are unconstrained. In the latter case a trivial constraint is actually

NONMEM Users Supplemental Guide – Part II page 7

being imposed where there is only one block set, and this block set has only one block.

Therefore, throughout that document all discussion concerning the STRUCTURE record for

omega indicates that there are just two fields of that record, in which are placed the values 1 and

the dimension of omega. Also therefore, it is indicated that whenever a STRUCTURE record for

omega appears, the values 0 and 1 are placed in fields 6 and 7, respectively, of the initial

STRUCTURE record.)

The way in which the block set partition is implemented for the sigma matrix is similar to the

way this is done for the omega matrix. A STRUCTURE record for sigma appears. In addition, a

zero or blank is placed in field 8 of the initial STRUCTURE record, and the number of block sets

of the partition is placed in field 9 of that record. The general formats of the initial STRUCTURE

record and the STRUCTURE record for omega (and sigma) are given, respectively, in Tables

B.3.i and B.3.ii, below.

Table B.3.i Initial STRUCTURE record format (See Introduction to NONMEM VI March

2008 for complete format.)

Field no.

Value Function

1 between 0 & 70 length of theta vector

2 between 0 & 70 length eta vector

3 between 0 & 70 length of epsilon vector

4 blank

5 blank

6 0 or blank

1

omega constrained with a block set partition

omega constrained to be of simple diagonal form

7 0 or blank between 1 & 70 only if field 6 has value 1 number of block sets for omega

If the dimension of  is 0, the following fields may be ignored.

8 0 or blank

1

sigma constrained with a block set partition

sigma constrained to be of simple diagonal form

9 0 or blank between 1 & 70 only if field 8 has value 1 number of block sets for sigma

NONMEM Users Supplemental Guide – Part II page 8

TABLE B.3.ii STRUCTURE record for omega (or sigma)

Field no.

Value Function

1 between 1 & 70 size of 1
st
 block set

2 between 1 & 70 Dimension of blocks in 1st block set

3 between 1 & 70 size of 2nd block set

4 between 1 & 70

etc.

Dimension of blocks in 2nd block set

The initial estimate for omega is specified on a contiguous series of BLOCK SET records for

omega, one for each block set of the partition. The common initial estimate for the blocks of the

ith block set is placed on the ith BLOCK SET record. There is a matrix, Ωi, such that each block

of the ith block set equals Ωi, and the estimates of the individual elements of the upper triangular

part of Ωi are placed in the successive fields of the ith BLOCK SET record according to the

ordering: ωi11, ωi12, …, ωi1K(i), ωi22, ωi23,…, ωi2K(i), …, ωiK(i)K(i), where K(i) is the dimension of

Ωi (Recall that Ωi is symmetric.) With the third type of constraint, Ωi, in particular, may be

constrained to equal some given matrix, Ai. In this case. Ai should be taken to be the initial

estimate of Ωi. Moreover, a special character should be placed on the ith BLOCK SET record,

namely a 1 in position 8. The initial estimate for sigma is specified on contiguous series of

BLOCK SET records for sigma in exactly the manner the way the initial estimate for omega is

specified. The BLOCK SET records for sigma follow those for omega within the Model

Specification records. Of course, if on the initial STRUCTURE record, a 1 is placed in either

field 6 or 8, then the BLOCK SETS for omega or sigma, respectively, are replaced by a single

DIAGONAL record. The general format for the BLOCK SET records is given in Table B.3.iii.

Table B.3.iii BLOCK SET record format

Field no.

Value Function

1 initial estimate of (1,1) element of block

2 etc. initial estimate of (1,2) element of block

In addition, a 1 is placed in position 8 if this block is constrained t o equal the initial estimate.

NONMEM Users Supplemental Guide page 9

C. Simple Bayesian Nonlinear Regression

C.1 Introduction

An example of simple nonlinear regression is discussed in section C of NONMEM Users Guide,

Part I. This example is continued in this section in order to illustrate the discussion concerning

constraints given in section B and in order to illustrate several additional NONMEM features.

The first additional feature to be illustrated is the Theta Constraint Option, by which one may

exercise some control over the way the constraints on the theta elements (see section C.4 of

NONMEM Users Guide, Part I) are implemented inside the NONMEM program itself. The

second additional feature gives the user the option to add a forty-five degree line onto a

scatterplot. This can be useful when, for example, in a simple nonlinear regression, predictions

are plotted against observations. The last additional feature gives the user the option to modify

the way in which the objective function is computed (while the statistical model itself remains

fixed); this involves use of a user-supplied subroutine, CRIT. The basic computation that is

presented here, one of a simple Bayesian nonlinear regression, does not, however, depend on the

presence of any of the additional features just mentioned, and it may be carried out as illustrated

below with only NONMEM features described in NONMEM users Guide, Part I, and constraints

on omega as discussed in section B of this document.

In section C.2 the theoretical aspects of the example are discussed. In section C.3,

implementation of the example is discussed. The three additional features that are mentioned

above are discussed in sections C.4-C.6. The reader can go immediately to these sections if he

wishes only to review the use of these additional features.

C.2 An Example

We continue the example of section C in the NONMEM Users Guide, Part I. First, we

reparametrize the function, f, as follows

))exp()(exp(
)(

),,,,(2122

213

121
21321 XX

X
XXf 




 




In words, we have redefined 3 to be the product of 2 and the original 3 . In pharmacokinetic

language, 3 now denotes drug clearance, where before it denoted volume.

The data in the old example are ten plasma concentrations from a single subject, S, from a

certain population. The (true) value of),,(321   varies from subject to subject within this

population. Although in this new example we are again interested in the (true) value of  for S,

here we shall consider an estimate of this value that is based on knowledge of how  varies in

the population, in addition to the plasma concentration data from S. The population itself has

been studied by measuring plasma concentrations from each of a sample of twelve subjects

chosen from the population. This larger data set was used in the example in section F of the

NONMEM Users Supplemental Guide page 10

NONMEM Users Guide, Part I, wherein estimates,),,(321   and C, of the mean and

covariance, respectively, of  in the population were obtained. Actually, 3 was obtained for

each of a family of subpopulations obtained by “stratifying” the population by body weight. The

estimate, 3 is characterized then as a function of weight. The relationship of 3 to weight is a

simple proportional one. Since the weight of S, in particular, is 72.4, 3 for the particular

subpopulation of interest is given by the proportionality constant, .0363, times 72.4, i.e. 2.63. On

the other hand, in the analysis of the population data,  was assumed to have homogeneous

covariance in the population. Another important population parameter was estimated in the

example of section F of NONMEM Users Guide, Part I. This parameter (denoted in that example

b y Σ) is the variance of the plasma concentrations from any population member, given that

member's value of  , and it is independent of  . Denote its estimate by 2 .

Consequently, in addition to the ten measurements from S there are three other measurements

from the population _that have information about  for S, namely: 1 , 2 , and 3 . More precisely,

3,2,1 iioii 

where

.),,(

0),,(

302010

302010

CCov 







(Of course, C is only an estimate of the covariance, and the assumption that the expectation is 0 is

compromised by the fact that the i are only estimates of the true means of the i . However,

some people feel that often one is better off using some prior (population) information about the

unknown parameter one is trying t o estimate, rather than none at all, even if this information is

not very precise.) Combining this model with the model for the ten plasma concentrations, we

obtain

3,2,1 iY ioiio 

10,,3,2,1),,,,(4213211  jXXfY jjjj 

10,,2,1,00),,,(4321  jE jjjj 

10,,2,1,0
0

0
),,,(

24321 









 j

C
Cov jjjj




Here, Yio=  and the Y1j are the ten plasma concentrations. This is an example of a model with equivalently

nested random effects and NONMEM may be used. (See section D.6 of NONMEM Users Guide, Part I.)

Of course, one must be able to constrain the covariance matrix of the ki as specified above. This, though,

is the major point of this example, and the set up for NONMEM is described in the next section.

NONMEM Users Supplemental Guide page 11

The (default) objective function for this particular model is

2
10

1

2

21,32110

1

0321 /)),,,((),,( 


 
j

jjj

T XXfYYCYO

plus another (log) term that is independent of  , as may be seen by regarding the objective function for the

general model with equivalently nested random effects. Here),,(3020100 YYYY  . Note that 2 is not an

argument of this function, in contrast with the situation in the old example, since in this new example we

assume it to be a known constant. Instead of viewing the population information as giving rise to a model

with equivalently nested random effects, one may take another view that leads to the same objective

function. Assume that  is normally distributed in the population with mean  and covariance C.

This multivariate distribution is taken as a prior distribution on  for S. Assume also that the

conditional distribution of jY1 , given  , is normal with mean),,,,(21321 jj XXf  and

variance 2 . Then using Bayes formula (1, page 334) the negative log of the posterior density of

 , may be seen to equal the above objective function, again up to a term independent of  .

From this point of view the estimate of  obtained from minimizing this objective function is the

mode of the posterior distribution.

C.3 Implementation of the Example

A code for PRED is given in Figure 1. There it may be seen that an additional data item is used

to determine whether the DV data item is an observed concentration or an element of  . If the

value of this data item is zero, the DV data item is an observed concentration: if it is i, the DV

data item is i .

The problem specification is given in Figure 2. Upon examining the data, one sees that a fifth

data item also has been added. This is the ID data item. It is there because the k are random

individual effects.

In this example the block set partition for omega has two block sets, each of these block sets has

a single block, and the two blocks have dimension 3 and 1. This is reflected in fields 6 and 7 of

the initial STRUCTURE record and in the STRUCTURE record for omega. Note also that there

is a one in position 8 of both BLOCK SET records, thus constraining the two blocks to C and
2 , respectively, the values of which are specified on these records. There is no sigma matrix.

There is a two in field 5 of the initial STRUCTURE record, and there is a one in field 6 of the

last SCATTERPLOT record. These specifications are discussed in sections C.4 and C.5.

Some output is shown in Figures 3-7. The summary of the problem specification is given in

Figures 3 and 4. Note that there the block diagonal form of omega is schematically displayed as a

patterned lower triangular matrix, and that the initial estimate of omega is displayed by giving

the initial estimate of each of the two blocks separately. There is also an indication there that

each block is constrained, or fixed, to its initial estimate. The final estimate is shown in Figure 5.

The final estimate of omega is, of course, equal to the initial estimate. Some of the scatterplots

are displayed in Figures 6 and 7. These are discussed in section C.5.

NONMEM Users Supplemental Guide page 12

C.4 The Theta Constraint Option (Obsolete)

An element, m , of theta may be bounded above and below by different finite numbers, a and b,

respectively. This is accomplished by i) taking a function, T, defined on all real numbers, and

whose range is the interval (b,a), ii) defining a new unconstrained parameter, m satisfying

)(mm T  

and iii) reparametrizing the functions f, gkij and hlij in terms of m . All the user need do for these

steps to be carried out is to use fields 4 and 5 of the initial STRUCTURE record and the LOWER

and UPPER records as described in section C of NONMEM Users Guide, Part I. The value one

placed in both fields 4 and 5 of the initial STRUCTURE record satisfies the requirement for that

record, and all relevant examples in NONMEM Users Guide, Part I, show the value one in these

fields. In this case T is given by

)(sin)()(2 xbabxT  .

A message that the arcsin transform is used appears on the summary of the problem

specification: the arcsin is, of course the “inverse" of the sin function. The Theta Constraint

Option allows the user to choose an alternative form for T. If the value two is placed in field 5

(see Figure 2), rather than one, T is given by

)
)exp(1

)exp(
)(()(

x

x
babxT


 .

A message that the logit transform is used appears on the summary of the problem specification;

see Figure 3. The logit is, of course, the inverse of the function:

)exp(1

)exp(

x

x
x


 .

Note that whatever choice for T is made, it applies to all elements of theta bounded above and

below by different finite numbers. The complete format of the initial STRUCTURE record is

given in Table C.4.i.

NONMEM Users Supplemental Guide page 13

Table C.4.i. Initial STRUCTURE record format (See Introduction to NONMEM VI March

2008 for current format.)

Field no.

Value Function

1 between 0 & 70 length of theta vector

2 between 0 & 70 length eta vector

3 between 0 & 70 length of epsilon vector

4 blank

5 blank

6 0 or blank

1

omega constrained with a block set partition

omega constrained to be of simple diagonal form

7
0 or blank between 1 & 70

only if field 6 has value 1 number of block sets for omega

If the length of the epsilon vector is 0, the following fields may be ignored.

8 0 or blank

1

sigma constrained with a block set partition

sigma constrained to be of simple diagonal form

9 0 or blank between 1 & 70 only if field 8 has value 1 number of block sets for sigma

C.5 The Unit Slope Line

The following discussion does not pertain to NONMEM Version I. Users of subsequent versions

will notice that when one of the two data items defining the points on a scatterplot is the residual

or weighted residual data item, a line, defining the zero residual for all values of the other data

item, appears on the scatterplot (see Figure 6). The user may specify that another type of line

appear on each scatterplot of any given family. This is the unit slope line, i.e. the line through the

point (0,0) with slope equal to one. This line is useful, for example, when plotting the prediction

data item against the DV data item (see Figure 7). If for some given family of scatterplots, the

unit slope line is desired on each scatterplot of the family, the value one should be placed in field

6 of the SCATTERPLOT record defining the family. The complete format for the individual

SCATTERPLOT record is given in Table C. 5.1.

NONMEM Users Supplemental Guide page 14

Table C.5.i Individual SCATTERPLOT record format (See Introduction to NONMEM VI

March 2008 for complete format.)

Field no.

Value Function

1 between 1 & 23 index of data items

plotted or abscissa axis

2 between 1 & 23 index of data items

plotted on ordinate axis

3 0 or blank

1

2

single member scatterplot

a one-way partitioned scatterplot

a two-way partitioned scatterplot

If value of field 3 is 0 or blank, the next two fields should be ignored.

4 between 1 & 23 index of (1st) separator

If value of field 3 is 1, the next field should be ignored.

5 between 1 & 23 index of (2nd) separator

6 0 or blank

1

no unit slope line appears

unit slope line appears

C.6 CRIT

The reader will recall that the default objective function used in NONMEM is the sum of

contributions from each individual and that the second term in the contribution from the jth

individual is the sum of squared weighted residuals for the jth individual. The user may

substitute for this term another function of the weighted residuals. For example, the term

jjjj nRRR  21 may be used, where the Rji are the nj weighted residuals for the jth

individual. This substitution is accomplished by including along with PRED another user-

supplied subroutine, CRIT. A vector of weighted residuals for some individual is passed to

CRIT, and CRIT should return the value of the function to be used on the weighted residuals. In

fact, the function itself may vary from individual to individual since the number of the individual

(in individual record ordering) is also passed to CRIT. Since the value of nj varies with

individual, this value is also passed. Finally, there is opportunity for initialization of CRIT since

a last argument is passed to CRIT that functions such as the argument ICALL functions in

PRED. The entire argument list is summarized in Table C.6.i.

Table C.6.i Arguments of CRIT

Argument

Value Function

ICALL 0

1

2

first call to CRIT in the run

first call to CRIT in current problem

computation of function value required

J positive integer number of individual

N number of observations for the individual

WRES vector of weighted residuals

V value of function

NONMEM Users Supplemental Guide page 15

CRIT may be as complicated as seems necessary and appropriate. In particular, it may call other

user-written subroutines to accomplish various parts of its task. The following DIMENSION

statement should be included.

DIMENSION WRES (1)

In Figure 8 a code for CRIT used in the example is given. It may be easily seen that the function

used is identical to the one used by default. Of course, CRIT is not needed when this particular

function is used (and actually NONMEM does not compute a sum of squares when CRIT is not

supplied, but rather NONMEM computes something which is equivalent, based on the particular

form of the Rj.)

There is a subroutine named CRIT that is a part of the NONMEM package, and it has the same

name as the subroutine described in this section. It is used automatically by NONMEM, as a

result of employing the IBM Linkage Editor as described in NONMEM Users Guide, Part III,

when a user-supplied CRIT is not present. However, it does not resemble the subroutine shown

in Figure 8.)

NONMEM Users Supplemental Guide – Part II page 16

Figure 1

NONMEM Users Supplemental Guide – Part II page 17

Figure 2

NONMEM Users Supplemental Guide – Part II page 18

Figure 3

NONMEM Users Supplemental Guide – Part II page 19

Figure 4

NONMEM Users Supplemental Guide – Part II page 20

Figure 5

NONMEM Users Supplemental Guide – Part II page 21

Figure 6

NONMEM Users Supplemental Guide – Part II page 22

Figure 7

NONMEM Users Supplemental Guide – Part II page 23

Figure 8

NONMEM Users Supplemental Guide – Part II page 24

D. Linear Regression with One-Level Nested Random Effects

D.1 Introduction

An example of linear regression with one-level nested random effects is discussed in section E of

NONMEM Users Guide, Part I (example 2). This example is continued in this section with three

different variations, discussed in turn in sections D.2-D.4.

D.2 Example Involving Transgeneration of Data

D.2.1 Introduction

In the old example there occur pairs of DV data items, each pair consisting of a measured

clearance and a measured elimination rate constant. From any pair, a derived measurement may

be computed, the volume, which is the ratio of the clearance to the rate constant. In this new

example the pairs of clearance and volume are available, rather than the pairs of clearance and

rate constant. The data set looks the same except that when the type data item is 0, the DV data

item is a clearance, and when the type data item is 1, the DV is a volume. The model to which

the data will be fit is, however, the exact same one used in the old example. So, somehow the

measured rate constants must be made available.

The rate constant could be computed in PRED. The idea here is based on the fact that when

computing the value of the objective function, NONMEM takes as the value of the DV data item

in a given data record, the value found in DATREC immediately after PRED has processed this

data record and returned control to NONMEM. In our particular example then, the DV data item

would be stored in A (some variable defined in PRED) when the type data item is 0, and the ratio

of A to the DV data item would be computed and would replace the DV data item when the type

data item is 1. However, a rate constant should only need be computed once, rather than with

each pass through the data. Also, when the rate constant is returned from PRED as the DV data

item, NONMEM does not store it in the data set or anywhere else where it could be available for

tabling or scatterplotting. The returned value of the DV data item is used only in the computation

of the objective function. Therefore, instead of computing the rate constant in PRED, the

transgeneration feature is used. This is described in section D.2.2.

NONMEM Users Supplemental Guide – Part II page 25

Four additional NONMEM features are described in sections

D.2.3-D.2.6. The first feature gives the user the option of not specifying the total number of data

records in the data set on the DATA record. The second feature gives the user the option of

specifying his own labels for the prediction, residual and weighted residual data items. The third

feature gives the user several more options for computing the covariance matrix and obtaining

intermediate printout involved in that computation. The fourth feature gives the user the option

to obtain the eigenvalues of the correlation matrix.

D.2.2 Transgeneration (PASS)

The transgeneration of data is accomplished with a fair degree of generality and ease with

NONMEM. Essentially, when ICALL, the first argument of PRED, is 0 or 1, PRED has access

to the data set. Therefore, at run or problem initialization time, data items may be replaced with

new ones computed in PRED. If a data item is input as a blank, or as any nonmeaningful

number, replacing it with a new data item in PRED at initialization time, is tantamount to

constructing an additional data item, although the actual number of data items per data record is

unchanged. Moreover, when ICALL is 3, PRED also has access to the data set. Therefore, at

problem finalization time data items that depend on the final estimate of theta may be computed

and stored for subsequent tabling or scatterplotting.

The mechanism by which the data set is made available to PRED involves a NONMEM utility

subroutine that PRED may call when ICALL is 0, 1 or 3. It is called PASS, and it has one integer

argument, MODE. To pass through the data set, first call PASS with MODE set to 0, in order to

initialize PASS. Then call it repeatedly, each time with MODE set equal to 2. With each such

call another data record is passed to PRED and is stored in the DATREC argument of PRED.

The first call produces the first data record, the second call produces the second data record, etc.

The user need not keep counting the data records in order not to call PASS too many times. After

each call PASS returns control to PRED with the value of MODE unaltered, except when there

are no more data records to be passed, in which case MODE is reset by PASS to 0. Therefore, if

after each call to PASS, PRED checks the value of MODE, PRED will know when one complete

pass through the data records has occurred. PRED may initiate as many passes through the data

records as is deemed necessary.

Before describing other points about PASS, let's look at an illustration. The code for PRED for

the example is given in Figure 9. When ICALL is 1, PASS is called first with its argument,

MODE, set equal to zero. PASS is thus initialized. Thereafter, it is called repeatedly at statement

15 with MODE equal to 2, and after each such call, the DV data item in DATREC(3) is replaced

by the rate constant whenever the type data item is 1 (see discussion about the variable A at the

beginning of section D.2.1). After each such call, the value of MODE is tested, and when it is 0,

there is no more data to be transgenerated, and PRED returns control to NONMEM. Upon all

subsequent calls to PRED, the rate constants, rather than the volumes, will be found in

DATREC(3).

In addition to this transgeneration, when PRED is finalized, the predicted clearance and

predicted volume are computed and stored in a new fifth data item. Recall that clearance is

NONMEM Users Supplemental Guide – Part II page 26

predicted by a linear function of weight. The constants of these linear functions depend on theta,

whose final estimate is available in THETA. The predicted clearance or the predicted volume is

stored in DATREC(5) according to whether the type data item is 0 or 1 respectively. To gain

access to DATREC(5) and the type data item, PASS is used.

The problem specification for this example is given in Figure 10. Note that the number of data

items per data record specified on the DATA control record is now five, and that the FORMAT

record also reflects the presence of five data items per data record. Finally, note that blanks are

input as the values of the fifth data item. It is immaterial what values are input since the values of

the fifth data item are really obtained in PRED by transgeneration of the values of other data

items.

The output from NONMEM from this example is, of course, essentially just that of the old

example since only the data set before problem initialization is different, but at problem

initialization the data set is transgenerated to look like the old data set. Scatterplots of observed

clearance versus predicted clearance and of observed volume versus predicted volume were

added to the output in this example and are given in Figures 11 and 12. Note the inclusion of the

unit slope line (see section C.5)

There are two other values that may be assumed by MODE. If the user only wants to access the

data records without modifying them, the value 1 may be used instead of 2. Use of the value 1

will safeguard inadvertent destruction of material in the data set, and it will also save some

computing cost. Whatever value is used, 1 or 2, this value must be used on every call to PASS

until PASS is reinitialized, with the following exception. If the value 1 is used, then at any call to

PASS (after the initializing call) the value 3 may be used, in which case PRED tells PASS that

the pass through the data records is to be terminated. A subsequent call to PASS must be an

initializing call with MODE set equal to 0.

There are two ways a pass through the data records is terminated. Either the last data record of

the data set has already been passed, and PASS returns with MODE equal to 0, or PRED sets

MODE equal to 3 and calls PASS. In either case the first data record of the data set is again

found in DATREC when PASS returns final control to PRED.

Lastly, during a pass through the data records, the value of the argument NEWIND in PRED

changes as it would during a pass through the data records when ICALL is 2.

The possible values of MODE are summarized in Table D. 2.2.i.

NONMEM Users Supplemental Guide – Part II page 27

Table D.2.2.i Arguments of PASS

Argument

Value Function

MODE 0 initialize PASS

 1 obtain next data record; it will not be modified

 2 obtain next data record; it may be modified

 3 terminate PASS (used only after MODE=1)

D.2.3 FINISH Record

One way to communicate the number of data records to NONMEM is to include this number in

field 3 of the DATA control record. Another way is to simply place a blank or zero in that field

and place a FINISH record after the last FORTRAN record in the input data file. The FINISH

record is regarded as part of the input data file per se, rather than as another control record. Its

format is quite simple, though quite different from that of the control records, and is given by the

following two rules.

1. The FINISH record contains blank characters in positions 1-76 and 80 and the characters F, I

and N in positions 77, 78 and 79, respectively.

2. If m is the number of FORTRAN records spanned per data record, there must be m-1 blank

FORTRAN records inserted before the FINISH record.

In addition, for one to be able to use the FINISH record the following three rules must be

followed.

1. All FORTRAN records of the input data file must be 80 characters long.

2. All FORTRAN records of the input data file except the FINISH record must have blank

characters in positions 77-80.

3. The total number of A, B and F codes on the FORMAT record, including their multiplicities,

must equal, i.e. not exceed, the number of data items specified on the DATA record.

The first of these three rules is always satisfied when the input data file is embedded in the

control stream.

Use of the FINISH record is illustrated in Figure 10. The summary of the problem specification

for this example is shown in Figure 13. There it may be seen that NONMEM has counted the

number of data records and recorded this number on the summary.

The necessary change in the DATA record that accompanies the use of the FINISH record is

reflected in the format for this record given in Table D.2.3.i.

NONMEM Users Supplemental Guide – Part II page 28

Table D.2.3.i DATA record format (See Introduction to NONMEM VI March 2008 for

current format.)

Field no.

Value Function

1 0 or blank

between 20 & 99

data set embedded in the control stream

FORTRAN unit number for data file

2 0 or blank

1

FORTRAN unit not to be rewound

FORTRAN unit to be rewound

3 0 or blank

positive integer

FINISH record used number of data records

4 between 1 & 20 number of data items per data record

D.2.4 Label Option

From Figure 13 it may be noted that the label of the prediction data item is PRD1, rather than the

standard label, PRED. Nonstandard labeling for any one of the three data items: prediction,

residual and weighted residual data items, is in general accomplished by including user-chosen

labels for all three data items on the LABEL record. These three labels follow the labels that

generally occur on the LABEL record. In addition, a one is placed in field 6 of the ITEM record.

See Figure 10 for illustration. There the user-chosen labels for the residual and weighted residual

data items coincide with the standard labels. (Nonstandard labeling, as described here, is not

available in NONMEM version I.) The format for the ITEM record, showing the six fields so far

defined, is given in Table D. 2.4.i.

Table D.2.4.i ITEM record format (See Introduction to NONMEM VI March 2008 for

complete format.)

Field no. Value Function

1 between 0 & 20

20

index of ID data item

2 between 1 & 20

20

index of DV data item

3 between 0 & 20 index of MDV data item

4 between 0 & 20 number of data item indices in INDXS

5 0 or blank

1

no user data item labels supplied

user data item labels supplied

6 0 or blank

1

standard labels PRED, RES, WRES used

nonstandard labels used

D.2.5 COVARIANCE Record

There are two matrices that are computed in the Covariance Step as intermediate steps toward

computing the covariance matrix. The first matrix, the R matrix, is the Hessian matrix (or second

derivative matrix) of the objective function, evaluated at the final estimate of the model parameter (θ,

NONMEM Users Supplemental Guide – Part II page 29

Ω, Σ). The second matrix, the S matrix, is the sum of matrices, S j , one matrix for each individual. Each

matrix, S j , is jj , where j is the gradient (column) vector of the contribution to the objective

function from the jth individual, evaluated at the final estimate of the model parameter Under the

assumption that all random effects are normally distributed, the R and S matrices, each divided by

the number, N, of individuals in the sample, tend to the same matrix as N increases. In this case the

inverse of either matrix serves as an estimate of the true covariance matrix. When the normality

assumption is not made, the matrix R 1 SR 1 estimates the true covariance matrix. This is the default

estimate in NONMEM.

The user may specify that the covariance matrix be given by R 1 or S 1 . (This feature is not available in

NONMEM Version I, but in Version I the R and/or S matrices may be printed; see below.) In the first

case, the standard errors are based on R 1 , the inverse covariance matrix is given by R, the correlation

matrix is that of R 1 , and the eigenvalues (see section D.2.6) are those of R 1 . Similarly in the second case.

To specify that the covariance matrix be given by R 1 , a one is placed in field 2 of the COVARIANCE

record. To specify that the covariance matrix be given by S 1 , a two is placed in this field. To use the default

covariance matrix, a blank or zero is placed in this field. (In NONMEM Version I, field 2 is used for a

different purpose; see below.)

Suppose the default covariance matrix is used. Then either the R or S matrix, or both matrices,

may be printed at the user's option. To specify that the R matrix, but not the S matrix, be printed,

a one is placed in field 3 of the COVARIANCE record. To specify that the S matrix, but not the

R matrix be printed, a two is placed in this field. To specify that both R and S be printed, a 3 is

placed in this field. The problem specification in Figure 10 specifies that both matrices are to be

printed. The desired printout is given in Figures 14 and 15.

If a blank or zero is placed in field 3, neither the R nor S matrix is printed (as long as there is also

a blank or zero in field 2). Users of NONMEM Version I should use field 2 for the purpose of

specifying printing of the R and/or S matrix, rather than field 3.

For a summary of the COVARIANCE record format see the next section.

D.2.6 Eigenvalues

Another statistic may be output at the user's option. This is the vector of eigenvalues of the

correlation matrix. The individual eigenvalues are ordered from the least in value to the largest in

value. To obtain the eigenvalues, a one is placed in field 4 of the COVARIANCE record. See

Figure 10 for illustration. The eigenvalues for the example are given in Figure 16. The complete

format of the COVARIANCE record is given in Table D.2.6.i.

NONMEM Users Supplemental Guide – Part II page 30

Table D.2.6.i COVARIANCE record format (See Introduction to NONMEM VI March

2008 for current format.)

Field no. Value Function

1 0 or blank

1

2

Covariance Step conditionally implemented

Covariance Step unconditionally implemented

Covariance Step omitted

If the value is 2, the subsequent fields may be ignored.

2 0 or blank

1

2

covariance matrix set equal to R
1

SR
1

covariance matrix set equal to R
1

covariance matrix set equal to S
1

3 0 or blank

1

2

3

neither R nor S printed

R matrix printed

S matrix printed

both R and S printed

4 0 or blank

1

eigenvalues not printed

eigenvalues printed

Users of NONMEM Version I should use field 3 for the purpose of specifying printing of eigenvalues, rather than

field 4.

D.3 Example Involving Complete Multivariability

D.3.1 Introduction

In the old example clearance and rate constant of elimination resulting from the same dose were

assumed to be statistically independent conditional on the individual to whom the dose was

given, i.e. conditional on the values of the first type random effects for the individual. It could

not have been otherwise, since it is a property of the general model for one-level nested random

effects as described in NONMEM Users Guide, Part I, that the joint levels of the second type

random effects are taken to vary between observations and be independent. As a consequence, in

the example, sigma was assumed to be diagonal. Since only one of ij1 and ij2 actually affect

the observation, ijy , these two random variables cannot be taken to be correlated so long as the

above mentioned property of the general model must be satisfied. However, this property

actually need not be satisfied, and this is the main idea to be discussed here and in subsequent

sections. Let us first extend the model in the old example so that clearance and rate constant of

elimination are not taken to be conditionally independent, and sigma is not taken to be diagonal.

Write ijy1 for the CL of the ith pair in the jth individual, and ijy2 for the KE of the ith pair in the

jth individual. Also, let ijx11 and ijx12 both be the weight of the jth individual (for all i), and let

ijx21 and ijx22 be the numbers 0 and 1, respectively for all i and j. Then let the model for rijy be

given by

),,,,(21321 rijrijrij xxfy 

NONMEM Users Supplemental Guide – Part II page 31

 jrijjrij xgxg 222121)()( 

 ijrijijrij xhxh 222121)()( 

Where

21121321 ,{),,,,(  xxxf if 02 x

 { 3 if 12 x









10

01
)(

2

2

21
xif

xif
xg









10

01
)(

2

2

22
xif

xif
xg

2,1)()(22  kxgxh kk

0),(21 jjE  Cov jallforjj ),(21 

0),(21 ijijE  Cov jiallforijij ,),(21  .

There are several differences between this model formulation and the old one. First, and least

important, the argument lists for the g and h functions have been shortened since these functions

never really depended on those arguments that have been deleted. Second, the second type

random effects do not assume different values with different observations; they may assume

different values with different pairs of observations. This is why the observations have been

triply subscripted, whereas before they were doubly subscripted. However, it is still assumed that

the different joint levels of the second type random effects, i.e. the vectors (ij1 , ij2) for all i and

j, are statistically independent. As a result of this difference in the model formulation, ijy1 and

ijy2 are certainly not conditionally independent. Third, sigma is not constrained to be diagonal. It

need not be since, although only ij1 affects ijy1 and only ij2 affects ijy2 , as just observed ijy1

and ijy2 are not conditionally independent.

This model is but an example of a more general one that may indeed be implemented with

NONMEM, and this general model is described in the next section, D.3.2. To use a triply

subscripted model, the so-called level two data item must be used, and this is discussed and

illustrated for the example in section D.3.3.

D.3.2 The General Model with One-Level Vested Random Effects

The complete form of the general model with one-level nested effects that is implemented in

NONMEM is given in this section. The special case, given in section F.5 of the NONMEM

Users Guide, Part I, is still quite general and should suffice for most purposes.

The observations are triply subscripted: rijy , r=1,m ij , i=1,n j , j=1,J where for some j, h j >1 and

for some i, j, m ij >1. The model for rijy is given by

NONMEM Users Supplemental Guide – Part II page 32

(rij rijfy  ) + 


K

k

krijg
1

)( kj + 


L

l

lrijh
1

() lij

E(j1 , 0),...,2 Kjj 

 for all j

Cov (j1 , ),...,2 Kjj 

E(0)..., 21 Lijijij 

 for all i, j

Cov (()..., 21 Lijijij 

where the rijf , krijg , and lrijh are functions of the vector-valued parameter,  , the vectors

j (j1 ,),...,2 Kjj  are independent random vectors, the vectors)..., 21 Lijijijij   are

independent random vectors, and for each i,j, the covariance of η j and ij is zero. The triple

subscripting on the function f, and on the functions kg and lh , serves as a shorthand alternative

to listing the values of the x's as was done in the example. This model looks very similar to the

one in NONMEM Users Guide, Part I. Formally, the only difference appears to be the use of

triple, rather than double, subscripting. But this difference is nonetheless the important

distinction to be made here and is related to the full multivariate character of observations from a

given individual, conditional on the individual.

For  , and r, i, j, the values of)(1 rijg ,)(),...(2  Krijrij gg

are returned in PRED in G(1), G(2),...,G(K), respectively, and the values of)(1 rijh ,

)(),...(2  Lrijrij hh are returned by PRED in H(1), H(2),…, H(L) respectively. Both K and L can

be at most 5.

The (default) objective function for this model is

)],,(),,(),,(det[log),,(
1

 


 jj

J

j

j RRCO

where

),...,,...,,(12111 1 jnymjmjjj jjjnj
Yyyyy 

),,(jC covariance matrix of jy under the model

))(),...,(),...,(),(()(12111 1
 jnmjmjjj jjjnj

fffff 

2/1),,())((),,(  jjjj CfYR .

Now let

))(),...(),...,(),(()(12111 1
 jnkmjkmjkjkkj jjjnj

ggggg 

and

)(),...,(),...,(),(()(12111 1
 jnlmjlmjljllj jjjnj

hhhhh 

NONMEM Users Supplemental Guide – Part II page 33

Let ()jG  be the K by jQ matrix whose kth row is ()kjg  , and let ()jH  be the L by jQ matrix

whose lth row is)(ljh . Here

jnjjj j
mmmQ  ...21 .

The matrix jC can be expressed in terms of the matrices jG and jH . To do this some further

notation is needed.

Let Q be a positive integer, and let there be a vector of positive integers,),...,(21 nqqqq  , whose

sum is Q. Let)(ijaA  be a Q-dimensional matrix. Define diag Aq to be the block diagonal

matrix























nA

A

0

.

.

.

01

Where kA is the submatrix of A consisting of those elements ija such that

 


 


1

1 1

,
k

l

k

l

ll qjiq .

Using this notation, we have

))()(()()(),,( jjqjjj HHdiagGGC
j

where).,...,,(21 jnjjj j
mmmq 

D.3.3 The Level Two Data Item

To use the triply subscripted model the groups of observations in which the second type random

effects do not vary must be delineated for NONMEM. This is done analogously to the way the

groups of observations in which the first type random effects do not vary are delineated. That is,

a data item like the ID data item is used. One might also call the first type of random effects,

level one random effects and the second type of random effects, level two random effects. (There

are two levels of random effects, but there is only one level of nesting.) Then the ID data item

might be also called the level one (L1) data item, since it is used to group observations according

to level one random effects. The data item to be described in this section is called the level two

(L2) data item since it is used to group observations according to level two random effects.

In the general model the dependent observations are partitioned into groups in which the level

NONMEM Users Supplemental Guide – Part II page 34

two effects do not vary. These groups are called level two units. In NONMEM the data records

whose DV data items are those of a given level two unit may be grouped together, and this is

accomplished in part by including in each data record an L2 data item identifying the level two

unit containing the DV data item in the record. The L2 data items need not be integer valued (in

contrast to the ID data items). A problem specification for the example is given in Figure 17.

There the fifth data item of each data record is a L2 data item. Grouping is effected by including

the L2 data items in the data records and by arranging that all data records with the same L2 data

item be contiguous. The data records with the same L2 data item are collectively called a level

two unit record. As with L1 data items, the same L2 data item may actually be used to identify

different level two unit records, providing these records are not contiguous in the data set. Level

two unit records may consist of one or more case records (see section B.1, NONMEM Users

Guide, Part I). Only the last data record of a case record need contain an L2 data item.

Obviously, a level two unit record should be contained in a single individual record.

Lastly, the index of the L2 data items should be placed in field 7 of the ITEM record. See Figure

17 for illustration. The complete format of the ITEM record is given in Table D.3.3.i.

Table D.3.3.i ITEM record format
Field no. Value Function

1 between 0 & 20 index of ID data item

2 between 1 & 20 index of DV data item

3 between 0 & 20 index of MDV data item

4 between 0 & 20 number of data item indices in INDXS

5 0 or blank

1

no. user data item labels supplied

User data item labels supplied

6 0 or blank

1

standard labels PRED, RES, WRES used

nonstandard labels used

7 between 0 & 20 index of L2 data item

Users of NONMEM Version I should use field 6 of the ITEM record for the purpose of specifying the presence of

L2 data items. (This feature is not available in NONMEM Version I Level 1.)

The code for PRED for the example remains unchanged. In addition to inclusion of L2 data

items, the other important difference in the problem specification from that of the old example is

the inclusion of an initial estimate for the off-diagonal element of sigma. The initial estimate of

sigma (as a matrix) is obtained by first obtaining from each individual an estimate of the

covariance matrix of his CL and KE in the usual way. Then these individual estimates are

averaged to obtain an estimate, which after being rounded to the first significant figure, serves as

the initial estimate of sigma.

There is little difference between the final estimate, as given in Figure 18, and that of the old

example. The estimated intraindividual correlation between CL and KE, though, is .54. The

standard error of the final estimate is given in Figure 19, and the standard error of the estimate of

the intraindividual covariance between CL and KE, in particular, supports the significance of the

correlation.

NONMEM Users Supplemental Guide – Part II page 35

D.4 Example Involving Utilities CHOL and MULT

D.4.1 introduction

In section D.2, a NONMEM utility subroutine, PASS, is described. This subroutine can be called

by PRED. In this section two other NONMEM utility subroutines that can be called by PRED

are described.

The first utility, CHOL, allows the Cholesky square root of a positive definite matrix to be

obtained in a convenient way. (CHOL is not available with NONMEM Version I Level 1.) The

second utility, MULT, allows the two terms

),,(detlog jC and),,(),,(  jj RR

occurring in the (default) objective function to be weighted unequally, where the weights are

computed in PRED and may vary with j. MULT can also be used with CRIT (see section C.6).

(MULT is not available with NONMEM Version I.) These utilities may be used for a number of

different reasons. However, with this example we illustrate only one way in which they may be

used. The theoretical aspects of the example are given below. CHOL is described in section

D.4.2, and MULT is described in section D.4.3. The user may wish to go directly to these

sections to obtain these descriptions and skip the example.

Consider again the data used in the example of section D.3 and the model for this data developed

there. For each j, estimates of the three quantities

jjj wCL 11  

jjKE 23  

and Σ, where wj is the weight of the jth subject, may be obtained from just the 12 observations in

the jth subject. jLĈ is given by the sample mean of the 6 clearances: jEK̂ is given by the sample

mean of the 6 rate constants: ̂ is given by the sample covariance matrix of the 6 pairs of

clearance and rate constant. Write j̂ , instead of ̂ , to indicate that the estimate is based only on

the observations from the jth subject. Now assume that the second type random effects are

normally distributed. Let m=6. Then conditional on j1 and j2 , jj EKLC ˆ,ˆ() is multivariate

normally distributed with mean),(jj KECL and covariance Σ/m, while jm  ˆ)1(is

independently Wishart distributed with parameters Σ and m-1 (2). So unconditionally,

jj EKLC ˆ,ˆ() is multivariate normally distributed with mean (jw1 , 3) and covariance m/ ,

while jm  ˆ)1(is independently Wishart distributed with parameters Σ and m-1. Therefore, the

negative log-likelihood of),,( based on the jj EKLC ˆ,ˆ , and j̂ may be written in a straight

forward manner and is the sum of two components, one component, jS1 , being the contribution

from jj EKLC ˆ,ˆ() and the other component, jS2 , being the contribution from j̂ . The negative

log likelihood of),,( based on jj EKLC ˆ,ˆ and j̂ for all j, is of course the sum of jj SS 21 

over all j. We shall indicate how NONMEM may be used to obtain the maximum likelihood

NONMEM Users Supplemental Guide – Part II page 36

estimate of),,( from the jj EKLC ˆ,ˆ . and j̂ . It may be shown that theoretically this

estimate coincides with the estimate obtained in section D.3, and that estimate is consistent even

though it is developed without the above normality assumption on the second type random

effects.

The first component, jS1 , is

))()((detlog 1  

jjjjjj fyCfyC

Up to an additive constant, where

mC j /

),(21 jjj yyy 
jj LCy ˆ

1  jj EKy ˆ
2 

),(21 jjj fff  jj wf 11  32 jf

This has the form of a term of the NONMEM (default) objective function for a model with

equivalently nested random effects (see section D.6 of NONMEM users Guide, Part I). In fact,

with appropriate definitions for the functions kijg and the omega matrix, in NONMEM an

individual can be specified whose observations and predictions are jy and jf and whose jC is

m/ . Define the omega matrix to be the block diagonal matrix














0

0

(use the constraint on omega described in section B). Define

11 ijg

 0

if i=1

otherwise

12 ijg

 0

if i=2

otherwise

Cg ij 3

 0

if i=1

otherwise

Cg ij 4

 0

if i=2

otherwise

where 6/1c . That is,


jG is










C

C

010

001

NONMEM Users Supplemental Guide – Part II page 37

The second component, jS2 , is

)ˆ()1(detlog)1(1 jtrmm

up to an additive constant. Since j̂ is positive definite, there exists a 2-dimensional lower

triangular matrix jT such that jjjTT 
 ˆ . This matrix is called the Cholesky square root of j̂ .

Since

)()ˆ(11 
 

jjj TTtrtr ,

the second component may be written as the sum of two terms:

2,1)1(detlog)2/)1((1 


  rTTmm jrjr

where jrT is the rth row of jT . The rth term may in turn be written as

)())(1(detlog)2/)1((1  

jjjjjj fyCfymCm

where now

0 jjrjj fTyC .

Momentarily ignoring the two coefficients 2/)1(m and 1m , this again has the form of a ten

of the NONMEM (default) objective function for a model with equivalently nested random

effects. With appropriate definitions for the functions kijg and with the same block diagonal

omega matrix as given above, in NONMEM an individual can be specified whose observations

and predictions are jy and jf and whose jC is Σ. Define

01 ijg for i=1,2

02 ijg for i=1,2

13 ijg

 0

If i=1

if i=2

04 ijg

 1

if i=1

if i=2

That is,


jG is










1000

0100

Hence, three individuals may be specified, each of which contributes a term to the NONMEM

objective function, and the sum of these three terms is jj SS 21  . Thus NONMEM may be used

to obtain the desired maximum likelihood estimate. There remain, though, two problems. The

first is that of obtaining the jrT , and the second is that of introducing the coefficients, 2/)1(m

NONMEM Users Supplemental Guide – Part II page 38

and 1m , into the objective function where this is necessary. Solutions to these problems are

presented in the next two sections.

D.4.2 Cholesky Square Root (CHOL)

CHOL is a NONMEM utility subroutine that may be called by PRED. It computes the Cholesky

square root of a given positive definite matrix A, i.e. the lower triangular matrix B satisfying

BB'=A. (It is not available with NONMEM Version I Level 1.) It is used in a fashion that is

particularly convenient for PRED. If the dimension of A is n, then CHOL is called n+1 times in

succession. The first call initializes the routine. On the (i+1)st call, the ith row of A is passed to

CHOL, and CHOL returns the ith row of B (i=1,...,n). Now suppose A is stored in the data set

with the elements of each row of A stored as data items of some data record, a different data

record for each row. Until each of the involved data records is passed to PRED, the entire matrix

A cannot be made available to PRED. Nonetheless, due to the way in which CHOL is organized

(as just described), as each data record is passed to PRED a different row of B can be made

available to PRED.

There are four arguments in the subroutine's argument list. The first argument should be set by

PRED to the integer 0 or 1 according to whether the call to CHOL is the initialization call or not.

The second argument should be set to the (integer) dimension of A. The third argument should

be set to the ith row vector of A on the (i+1)st call to CHOL. (The elements ija , j>i, are ignored.)

Upon return to PRED, the ith row vector of B is found in the third argument. (The elements ijb ,

j>i, are all zero.) The fourth argument contains an integer return code from CHOL each time a

return occurs. Upon return from the initialization call, this code is always 0. Upon return from

the (i+1)st call, this code is 0 unless CHOL has determined that based on the first i rows of A, A

is algorithmically not positive definite, in which case the return code is 1. At the initialization

call, the fourth argument should be set by PRED to either 0 or 1. If it is set to 0 at subroutine

initialization, then whenever CHOL is about to return with a return code of 1, CHOL actually

terminates NONMEM execution and prints an appropriate message (so the return never really

occurs). If the fourth argument is set to 1 at subroutine initialization, then CHOL always returns

control to PRED along with the appropriate return code. These arguments are summarized in

Table D.4.2.i.

Table D.4.2.i Arguments of CHOL

Argument Value Function

MODE 0 or blank

1

initialize CHOL

a matrix row is being passed

N between 1 & 5 dimension of matrix

R row of matrix

IER upon input when MODE is 0:

 0

1

CHOL terminates execution if matrix is algorithmically not positive definite

CHOL will always return control to PRED

 upon output:

 0

1

normal return

matrix is algorithmicallynot positive definite

NONMEM Users Supplemental Guide – Part II page 39

For the example, the code for PRED is shown in Figure 20, and the problem specification is

shown in Figure 21. Look first at the input data file. The data records are arranged in 12 groups

of six data records each. (Each data record of a particular group has the same first digit in its ID

data item.) The DV data item of the first data record of the jth group is jLĈ , and the DV data

item of the second data record of the jth group is jEK̂ . The DV data items of the remaining 4

data records of the jth group are all zero. However, the fifth data item of the third data record of

the jth group is the first element of the first row of j̂ , and the fifth and sixth data items of the

fifth data record of the jth group are the first and second elements of the second row of j̂ .

Therefore, the rows of jT may be obtained. This is accomplished by using CHOL during the

problem initialization phase of PRED, so that these rows may be stored as DV data items to be

used by NONMEM during problem execution. (See the discussion below about the PRED code.)

The first and second elements of 1jT may be obtained from the third data record of the jth group,

and these elements are to be stored as the DV data items of the third and fourth data records,

respectively. The first and second elements of 2jT may be obtained from the fifth data record of

the jth group, and these elements are to be stored as the DV data items of the fifth and sixth data

records, respectively.

Each of the groups of six data records just described is comprised of three individual records.

Consider the jth group. The DV data items of the first individual record are jLĈ and jEK̂ . The

DV data items of the second individual record are the elements of 1jT , and the DV data items of

the third individual record are the elements of 2jT (after PRED initialization). These three

individual records have the three ID data items jl, j2 and j3, respectively. A type data item also

appears in each data record, and this data item takes a unique value for each data record of an

individual record so that these different data records may be clearly identified. This is the fourth

data item in the data record. The weight data item appears as the second data item in both data

records of the first individual record of the jth group.

Notice too that, whereas in the previous examples where clearance has been modeled as a linear

function of weight, whose intercept has been constrained to be zero, in this example the intercept

has simply been eliminated so that there are only two elements of theta. These are the slope

parameter of the linear function and the population mean elimination rate constant. Omega is

constrained to be block diagonal with two blocks, each of dimension 2. Notice the use of the

structure and BLOCK SET records to accomplish this (see section B).

Regarding next the code for PRED, it may be seen that there are three different pieces of code,

starting at statements 5, 10 and 25, only one of which is executed during any particular call to

PRED, depending on the value of ICALL. During problem initialization, i.e. when ICALL is 1,

CHOL is used to obtain the jT , as mentioned above. This task is embedded in a pass through the

data set using the NONMEM utility PASS (see section D.2.2). For each j, the 6 data records of

the jth group are successively passed to PRED. The first two data records are simply ignored.

NONMEM Users Supplemental Guide – Part II page 40

Then CHOL is initialized. Then during the first of the two executions of the DO loop, CHOL is

used to obtain the elements of 1jT from the information on the third data record, and these

elements are stored as the DV data items of the third and fourth data records. During the second

execution of the DO loop, CHOL is used to obtain the elements of 2jT from the information on

the fifth data record, and these elements are stored as the DV data items of the fifth and sixth

data records. When ICALL is 2, F and G are computed according to the discussion in section

D.4.1. See the next section for the explanation of the call to MULT.

D.4.3 Reweighting Objective Function (MULT)

The (default) NONMEM objective function is the sum of terms

),,(),,(),,(detlog 


  jjjjj RRBCA

over all j, where all jA and jB are equal to 1. Other values of jA and jB may be used. The

NONMEM utility subroutine MULT allows these quantities to be set by PRED to values other

than 1. (This feature is not available in NONMEM Version I.) To set jA and jB to a and b, say,

PRED issues a single call to MULT during any one or more calls to it from NONMEM where i)

ICALL is 2 and ii) some data record from the jth individual record is in DATREC. (At least one

such call to MULT must be issued while ICALL is 2, and data records from the jth individual

record are being passed to PRED in DATREC.) MULT has only two arguments; the first is set to

a and the second to b. (If during each of a number of calls to PRED while i and ii hold, MULT is

called, then each time MULT is called it should be called with the same values for its two

arguments.)

In section C.6 it is explained that the contribution to the objective function from the jth

individual may be taken to be

)),,((),,(detlog   jjjjj RBCA

where jA and jB are equal to 1 and j is some function of the vector of weighted residuals

from the jth individual other than the inner product. MULT can be used, as described above, to

allow PRED to set jA and jB to values other than 1.

In the code for PRED in the example, given in Figure 20, it may be seen that with every

individual record with ID data item ending in 2 or 3, MULT is called with arguments equal to

2/)1(m and 1m whenever the last data record of the individual record is in DATREC.

NONMEM Users Supplemental Guide – Part II page 41

Figure 9

NONMEM Users Supplemental Guide – Part II page 42

Figure 10a

NONMEM Users Supplemental Guide – Part II page 43

Figure 10b

NONMEM Users Supplemental Guide – Part II page 44

Figure 10c

NONMEM Users Supplemental Guide – Part II page 45

Figure 11

NONMEM Users Supplemental Guide – Part II page 46

Figure 12

NONMEM Users Supplemental Guide – Part II page 47

Figure 13a

NONMEM Users Supplemental Guide – Part II page 48

Figure 13b

NONMEM Users Supplemental Guide – Part II page 49

Figure 14

NONMEM Users Supplemental Guide – Part II page 50

Figure 15

NONMEM Users Supplemental Guide – Part II page 51

Figure 16

NONMEM Users Supplemental Guide – Part II page 52

Figure 17a

NONMEM Users Supplemental Guide – Part II page 53

Figure 17b

NONMEM Users Supplemental Guide – Part II page 54

Figure 17c

NONMEM Users Supplemental Guide – Part II page 55

Figure 18

NONMEM Users Supplemental Guide – Part II page 56

Figure 19

NONMEM Users Supplemental Guide – Part II page 57

Figure 20

NONMEM Users Supplemental Guide – Part II page 58

Figure 21a

NONMEM Users Supplemental Guide – Part II page 59

Figure 21b

NONMEM Users Supplemental Guide – Part II page 60

E. Multiple Problems

E.1 Introduction

The possibility for multiple problem specifications to be processed in a single NONMEM run is

discussed in this section. A single problem specification is just a sequence of control records

(possibly with embedded FORTRAN records that generate a data set) that completely specify

one problem. It consists of a single problem record, one or more (contiguous) Data Set

Specification records, one or more (contiguous) Model Specification records, and one or more

(contiguous) Task Specification records. A multiple problem specification (MPS) is simply the

concatenation of two or more single problem specifications. Each of the single problem

specifications comprising a multiple problem specification is also called an individual problem

specification (IPS). If one individual problem specification immediately follows another in the

MPS, these two individual problem specifications are called contiguous. If in a sequence of

individual problem specifications, nAAA ,...,2,1 for each iAni , and 1iA are contiguous, the

sequence is called contiguous. Essentially, all that is necessary to process a multiple problem

specification is to have the control stream (i.e. the input file containing the control records)

consist of the MPS. Each IPS is processed in the order it appears in the MPS. Simple as all this

may be, there still are aspects of the MPS that must be described, and there are certain features

that a user may find advantageous. These matters are discussed in the subsequent sections.

E.2 Sharing a Data Set

In a MPS situation, the FORTRAN records generating data sets may be placed in a sequential

input file separate from the control stream. If the first n FORTRAN records of this file generate a

data set to be used with two or more individual problem specifications, then the user will want to

rewind the FORTRAN unit containing this file. As mentioned in section 3.5 of NONMEM Users

Guide, Part I, this can be done by placing a 1 in field 2 of the DATA record of any IPS with

which the rewind is to occur.

An alternative way to use the same data set with two or more individual problem specifications is

the following way. Suppose that a particular data set is used with one individual problem

specification and that this data set is to be used with one or more succeeding individual problem

specifications that, together with the first one, form a contiguous sequence of individual problem

specifications. The data set is established with the first individual problem specification, and it

need not be reestablished with the other problem specifications of the sequence. It has a

representation internal to NONMEM that may be used with these other problem specifications.

To refer NONMEM to this representation, in each of these other problem specifications it is only

necessary to place a -1 in field 1 of the DATA records of each of them. In this case a FORMAT

record need not and should not appear, and, of course, embedded data should not appear also, in

any of the problem specifications of the sequence except the first one. In addition, all values

placed in other fields of a DATA record with a -1 in field 1 are ignored. The number of data

items per data record in each problem specification of the sequence is the same as the number of

data items per record in the first one. (However, it is explained below how data items themselves

can actually be made to vary between problems.) The complete format of the DATA record is

given in Table E.2.i

NONMEM Users Supplemental Guide – Part II page 61

Table E.2.i DATA record format (See Introduction to NONMEM VI March 2008 for current

format.)

Field No. Value Function

1 -1

0 or blank

between 20 & 99

Data set same as that for previous problem specification

Data file embedded in the control stream

FORTRAN unit number for data file

If the value is -1, the subsequent fields may be ignored.

2 0 or blank

1

FORTRAN unit not to be rewound

FORTRAN unit to be rewound

3 0 or blank

positive integer

FINISH record used

number of data records

4 between 1 & 20 number of data items per data record

The reader will recall that a data set may be modified with the use of the NONMEM utility

PASS at either PRED initialization or finalization (see section D.2). At such a time, PRED can

also write the modified data set onto a peripheral file so that this file may be read as the input

data file in a subsequent problem in the same NONMEM run. Use of field 1 as just described

will accomplish the same end when the subsequent problem immediately follows the current

problem in the same run. The data set, as it exists at the end of PRED finalization, is "passed on"

to the next problem. All data items may be modified by PRED at PRED initialization and/or

finalization of the current problem, except for the ID and MDV data items. The ID and MDV

data items may not be modified at any time. However, the indices of the DV, MDV and L2 data

items may vary between problem specifications referring to the "same" data set. So, in particular,

the MDV data items may differ between problem specifications referring to the "same" data set.

E.3 Model Specification Files

(See Help Items in Guide VIII, March 2008 for current information.)

Recall that the Model Specification File is physically one logical record of a sequential data set.

Different individual problem specifications may specify different Model Specification Files be

output onto the same data set (in which case in the data definition statement of the data set the

disposition should be MOD.) Likewise, different individual problem specifications may specify

different Model Specification Files be input from the same data set. If the Model Specification

Files to be input, nAAA ,...,2,1 , appear in the data set in the indicated order (with possibly other

Model Specification Files between them), and this order is the one in which they are to be input,

then simply specifying their identifiers on the FIND records allows them to be retrieved.

However, if 1A , is to be input after 2A , say, then the FORTRAN unit containing the data set

should be rewound after 2A is input and before 1A is input. The unit will be rewound before the

Model Specification File is input if a 1 is placed in field 3 of the FIND record for that Model

Specification File. Table E.3.i gives the format for the FIND record through this third field.

NONMEM Users Supplemental Guide – Part II page 62

Table E.3.i FIND record (See Introduction to NONMEM VI March 2008 for current

format.)

Field No. Value Function

1 between 1 & 9999 identifier for (existing)

Model Specification File

2 between 20 & 99 FORTRAN unit number for

(existing) Model Specification File

3 3 or blank

1

FORTRAN unit not to be rewound

FORTRAN unit to be rewound

E.4 Embedding Files Into the Control Stream

The control stream is a sequential input file comprised essentially of the control records.

However, sequential files of other types of records may be embedded in the control stream. For

example, an input data file may be embedded. In addition though, two user supplied routines,

PRED and CRIT, may require some sequential input files, and any of these files may also be

embedded. Call the files for PRED to be embedded, PRED embedded files, and call the files for

CRIT to be embedded, CRIT embedded files. Suppose F is a file to be embedded. To embed F in

the control stream means to insert the records of F, altogether and in sequence, after either a

control record or the last record of another embedded file. This means that the records of F, like

the control records, must be 80 character records. If one file, 2F , is inserted farther down the

control stream than another file, 1F , then 2F is said to be below 1F . As explained below, files

must be embedded only at particular places in the control stream.

An input data file for a given problem should be embedded after the F0RMAT record for that

problem.

The control stream is sequential and is read once only. Therefore, each PRED or CRIT

embedded file, F, must be read entirely before any record of any other such file below F is read.

Also therefore, F can be read once only.

It is now explained where the PRED and CRIT embedded data sets should be embedded in the

control stream. Consider first a given problem, but not the first one. The situation for the first

problem is a little more complicated and is described below. A11 CRIT embedded files for the

problem (i.e. files read by CRIT when ICALL is 1 for the problem) must be below all PRED

embedded files for the problem (i.e. files read by PRED when ICALL is either 1 or 3 for the

problem). The first of the PRED and CRIT embedded files for the problem should be embedded

after the last SCATTERPLOT record of the problem specification. There must be no control

records between any of the PRED or CRIT embedded files for the problem. These PRED and

CRIT embedded files are regarded as part of the problem specification.

For the purpose of this description then, all the PRED embedded files for the kth problem may be

regarded as a single PRED embedded file, P(k). This file could be empty. Similarly, all CRIT

embedded files for the kth problem may be regarded as a single CRIT embedded file, C(k). This

NONMEM Users Supplemental Guide – Part II page 63

file, too, could be empty. From the above it follows that when)(,2 kCk  should occur below

)(kP without any intervening control records, and that)(kP should be embedded after the last

SCATTERPLOT record of the problem specification.

Now similarly, the PRED embedded files for NONMEM initialization (i.e. files read by PRED

when ICALL is 0) should be regarded as a single PRED embedded file, P(0). Also, the CRIT

embedded files for NONMEM initialization (i.e. files read by CRIT when ICALL is 0) should be

regarded as a single CRIT embedded file, C(0). Then C(1) should occur below C(0), C(0) below

P(1), P(1) below P(0), without any intervening control records, and P(0) should be embedded

after the last SCATTERPLOT record of the first problem specification. The foregoing is

summarized in Table E.4.i.

Table E.4.i Control Stream

PROBLEM record

…

FORMAT record

 <--------[input data set]

STRUCTURE record

…

SCATTERPLOT record

 <--------[P(0)]

 <--------[P(1)]

 <--------[C(0)]

 <--------[C(1)]

PROBLEM record

…

FORMAT record

 <--------[input data set]

STRUCTURE record

…

SCATTERPLOT record

 <--------[P(2)]

 <--------[C(2)]

PROBLEM record

…

NONMEM Users Supplemental Guide – Part II page 64

E.5 Embedding Files into the Print Stream

NONMEM printed output is placed in a print file, PF. Print files generated by PRED or CRIT

may be embedded in PF. Call the files from PRED to be embedded, PRED embedded files, and

those from CRIT to be embedded, CRIT embedded files. Suppose F is a print file to be

embedded, to embed F in PF means to input the records of F altogether after either a page of

NONMEM print records or the last page of another embedded print file. (It is the responsibility

of PRED (or CRIT) to insert a print control character that begins a new page of a PRED (or

CRIT) embedded file when a new page is to begin.) If one file, 2F is inserted further down the

PF than another file 1F , then 2F is said to be below 1F .

PF is, of course, sequential. Therefore, each PRED or CRIT embedded file, F, should be written

entirely before any record of any other such file below F is written.

It is now explained where the PRED and CRIT embedded files are embedded in PP. Consider

first a given problem, but not the first one. The situation for the first problem is a little more

complicated, and is described below. There are two types of PRED embedded files for the

problem. The first type is generated at problem initialization (i.e. when ICALL is 1), and the

second type is generated at problem finalization (i.e. when ICALL is 3). There is only one type

of CRIT embedded file, the type generated at problem initialization (i.e. when ICALL is 1). All

type two PRED embedded files for the problem are below all CRIT embedded files, and all

CRIT embedded files are below all type one PRED embedded files. The first of the PRED and

CRIT embedded files for the problem is embedded after the last of the problem summary pages

generated by NONMEM for the problem. There are no NONMEM print records dispersed

among the records of the PRED or CRIT embedded files for the problem, provided no

summarization of iterations from the Estimation Step is printed. If the summarization is printed,

then these intermediate pages of output occur between the last page of the last CRIT embedded

file (if this file exists, otherwise the last type one PRED embedded file) and the first page of the

first type two PRED embedded file (if this file exists). In the event that error message R is issued

from the Covariance Step (see section 6.4 of NONMEM Users Guide, Part I), no type two PRED

embedded files are printed.

For the purpose of this description then, all type one (two) PRED embedded files for the kth

problem may be regarded as a single type one (two) PRED embedded file Pl(k) (P2 (k)). This file

could be empty. Similarly, all CRIT embedded files for the kth problem may be regarded as a

single CRIT embedded file, C(k). This file too could be empty. From the above it follows that

when 2k , P2(k) occurs below C(k), C(k) occurs below Pl(k), Pl (k) is embedded after the last

of the problem summary pages for problem k, and P2(k) is embedded immediately before the

first page of output from the Estimation Step for problem k.

Now similarly, the PRED embedded files for NONMEM initialization (i.e. files generated by

PRED when ICALL is 0) should be regarded as a single PRED embedded file, P(0). Also, the

CRIT embedded files for NONMEM initialization (i.e. files generated by CRIT when ICALL is

0) should be regarded as a single CRIT embedded file, C(0). Then P2(l) occurs below C(1), C(l)

occurs below C(0), C(0) occurs below P1(1), and P1(1) occurs below P(0). Summarization of the

NONMEM Users Supplemental Guide – Part II page 65

iterations from the Estimation Step of the first problem occurs between C(1) and P2(1), if the

summarization is output; otherwise there are no NONMEM print records dispersed among the

records of these PRED and CRIT embedded files. P(0) is embedded after the last of the problem

summary pages of the first problem. If error message R is issued from the Covariance Step,

P2(1) is not printed. All of the foregoing is summarized in Table E.5.i.

Table E.5.i Print File

PROBLEM Summary

 <--------[P(0)]

 <--------[P1(1)]

 <--------[C(0)]

 <--------[C(1)]

[ITERATION Summary]

…

 <--------[P2(1)] only if message R does not occur

Estimation Step Summary

…

PROBLEM Summary

 <--------[P1(2)]

 <--------[C(2)]

[ITERATION Summary]

 <--------[P2(2)] only if message R does not occur

Estimation Step Summary

…

PROBLEM Summary

…

F. Rescaling

In this section the rescaling feature is described. This feature concerns the rescaled canonical

parameters (RCP) mentioned in section 5.2 of NONMEM Users Guide, Part I. These are

parameters established internally by NONMEM, and the parameter estimate in each summarized

iteration from the Estimation Step is given in terms of these parameters. The initial parameter

estimate—the one in the summary of the zeroth iteration—is such that all of its components are

0.1. If the number of significant figures specified on the ESTIMATION record is r, then the

parameter search terminates when the two estimates resulting from two successive iterations do

not differ in the first r significant figures (including leading zeros after the decimal point) in any

of the individual parameter components. This criterion applies to estimates in terms of the RCP.

NONMEM Users Supplemental Guide – Part II page 66

With this background then, suppose a parameter component is initially estimated too large by

one or more orders of magnitude. For example, suppose in terms of the RCP its final estimate is

0.00103, whereas its initial estimate is, of course, 0.1. Suppose further that the number of

significant figures specified on the ESTIMATION record is 3. Since leading zeros after the

decimal point are to be regarded as significant figures, the only figure in the final estimate that

follows the leading zeros after the decimal point and that has been accurately determined is that

in the thousandth place. Had the initial estimate not been so large, the final estimate could have

been more accurate. In this situation the user has the opportunity to continue the parameter

search and obtain greater accuracy.

There are two ways this can be done. The first is to continue the search in a subsequent

NONMEM run, using the final estimate of the first run as the initial estimate of the second run.

The initial estimate in terms of the RCP is now 0.1, and the (accurately determined) significant

figures of the final estimate should include no leading zeros after the decimal point. It is

recommended that if the user suspects before the first run that the parameter search may need to

be continued in a second NONMEM run for this reason, then a Model Specification File be used.

(If a Model Specification File is not used, but the initial estimate of the second run (all

components considered) is very close to what will be the final estimate of the second run, then

the search algorithm may not in fact be able to improve upon this initial estimate due to problems

with round-off error. In this case the usual message to this effect is issued.} However, when a

Model Specification File is used, the RCP in the second run are the same as those in the first run,

and in terms of these the initial estimate of the second run will be no different from the final

estimate of the first run, unless the rescaling feature is used. This feature allows the user to

specify that a new set of RCP is to be established in the second run, and in terms of these, all

components of the initial estimate are 0.1. To so specify, a 1 should be placed in field a of the

FIND record. If a blank or zero is placed in this field, rescaling does not occur. (Suppose,

though, that a Model Specification File is used, that a 1 is placed in field 4 of the FIND record,

but that the Estimation Step is omitted i.e. a 1 is placed in field 1 of the ESTIMATION record.

Then a new set of RCP are not in fact established.) The complete format for the FIND record is

given in Table F.i.

Table F.i FIND record format (See Introduction to NONMEM VI March 2008 for current

format.)

Field No. Value Function

1 between 1 & 9999 identifier for (existing)

Model Specification File

2 between 20 & 99 FORTRAN unit number for

(existing) Model Specification File

3 0 or blank

1

FORTRAN unit not to be rewound

FORTRAN unit to be rewound

4 0 or blank

1

estimate on file not to be rescaled

estimate on file to be rescaled

NONMEM Users Supplemental Guide – Part II page 67

There is a second way the user may continue the parameter search and obtain greater accuracy.

He may specify that after the search terminates, a new set of RCP is to be established, in terms of

which all components of the final estimate are 0.1, and that the search is to be automatically

continued in the same NONMEM run, with the new RCP. This may be accomplished by placing

a 1 in field 5 of the ESTIMATION record. The search continuation per se is regarded as a second

search, and the usual three lines of summary information from the Estimation Step are given for

both first and second searches. Moreover, if iterations are summarized for the first search, then

they are summarized for the second search too, but the two summarizations are kept separate,

and they are printed on separate pages. The value of r placed in field 3, remains in force during

the second search. However, if the upper limit to the number of objective function evaluations

that is placed in field 2 is M, while the number of objective function evaluations actually

occurring during the first search is n, then the upper limit in force during the second search is M-

m. A second search will be implemented only if the first search terminates successfully. In this

case if a Model Specification File is to be generated, the final estimate from the second search is

output on the file. If the first search terminates unsuccessfully, and if a Model Specification File

is to be generated, then the final estimate from the first search is output on the file. The complete

format of the ESTIMATION record is given in Table F.ii.

Table F.ii ESTIMATION record format (See Introduction to NONMEM VI March 2008 for

current format.)

Field no.

Value Function

1 0 or blank

1

Estimation Step implemented

Estimation Step omitted

If the value is 1, the subsequent fields may be ignored.

2 nonnegative Upper limit to number of objective function evaluations

3 between 1 & 8 number of significant figures required in final estimate

4 0 or blank

n>0

no monitoring of search routine

every nth iteration summarized

5 0 or blank

1

second search not implemented

second search implemented

6 0 or blank

1

Model Specification File is not generated

Model Specification File is generated

If the value is 0 or blank the following 2 fields may be ignored.

7 between 0 & 9999 file identifier

8 Between 20 & 99 FORTRAN unit number for file

NONMEM Users Supplemental Guide – Part II page 68

References

1. Rao, C.R. (1973). Linear Statistical Inference and Its Applications. New York: John

Wiley and Sons, pp.625.

2. Anderson, T.W. (1958). An Introduction to Mulitvariate Statistical Analysis. New York:

John Wiley and Sons, pp. 374.

	A. Introduction
	B. Constraints on Omega and Sigma
	B.1 Introduction
	B.2 Background
	B.3 Implementation

	C. Simple Bayesian Nonlinear Regression
	C.1 Introduction
	C.2 An Example
	C.3 Implementation of the Example
	C.4 The Theta Constraint Option (Obsolete)
	C.5 The Unit Slope Line
	C.6 CRIT
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

	D. Linear Regression with One-Level Nested Random Effects
	D.1 Introduction
	D.2 Example Involving Transgeneration of Data
	D.2.1 Introduction
	D.2.2 Transgeneration (PASS)
	D.2.3 FINISH Record
	D.2.4 Label Option
	D.2.5 COVARIANCE Record
	D.2.6 Eigenvalues

	D.3 Example Involving Complete Multivariability
	D.3.1 Introduction
	D.3.2 The General Model with One-Level Vested Random Effects
	D.3.3 The Level Two Data Item

	D.4 Example Involving Utilities CHOL and MULT
	D.4.1 introduction
	D.4.2 Cholesky Square Root (CHOL)
	D.4.3 Reweighting Objective Function (MULT)

	Figure 9
	Figure 10a
	Figure 10b
	Figure 10c
	Figure 11
	Figure 12
	Figure 13a
	Figure 13b
	Figure 14
	Figure 15
	Figure 16
	Figure 17a
	Figure 17b
	Figure 17c
	Figure 18
	Figure 19
	Figure 20
	Figure 21a
	Figure 21b

	E. Multiple Problems
	E.1 Introduction
	E.2 Sharing a Data Set
	E.3 Model Specification Files
	E.4 Embedding Files Into the Control Stream
	E.5 Embedding Files into the Print Stream

	F. Rescaling
	References

